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ABSTRACT

Bounds compression for fat pointers can reduce the memory and
performance overhead of maintaining pointer bounds and is neces-
sary for efficient hardware implementation. However, compression
can introduce inaccuracy to the bounds, making certain out-of-
bounds accesses undetectable. Although the security threat can be
mitigated by padding the objects, no known mitigations can detect
these out-of-bounds accesses deterministically.

We present MIFP, a method that automatically mixes both com-
pressed and uncompressed bounds to preserve the performance
benefits of bounds compression while ensuring accurate bounds
checking. Given a program using a single fat pointer representa-
tion (e.g., all compressed bounds), MIFP performs whole-program
analysis to expand potentially unsafe and inaccurate fat pointers
such that they carry accurate uncompressed bounds. To minimize
the number of pointers to expand, MIFP adds instrumentation on
a per-allocation-site granularity; objects of the same type but dif-
ferent code allocation locations can have their pointer members
transformed differently depending on how the pointers are used.
We describe our algorithm and supporting data structures, and
show that utilizing multiple fat-pointer representations reduces the
runtime and memory overheads of uncompressed bounds by 79%
and 93% respectively.

CCS CONCEPTS

« Security and privacy — Software security engineering; Sys-
tems security; Hardware security implementation.
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1 INTRODUCTION

Memory corruption in C and C++ programs is still a threat to the se-
curity of software systems. While these memory-unsafe languages
provide features like pointers and explicit memory management
that are convenient for high-performance or low-level applications,
misusing these features can lead to arbitrary memory read or write
vulnerabilities for malicious attackers. Due to the large existing
C and C++ codebase, it is still desirable to develop defenses and
mitigations against memory corruptions from the compiler, sys-
tem, and hardware perspective, instead of relying on programmer
manual effort [26].

Among the existing defense approaches, fat pointers are gen-
erally accepted as an effective defense against memory corrup-
tion from bad pointer arithmetic (referred to as spatial memory
errors). To distinguish out-of-bounds accesses from valid accesses,
fat-pointer schemes augment each pointer with a pair of addresses
that describes the accessible range for the pointer (thus “fat” point-
ers). The scheme can then check each memory access using the
pointer against the address range (known as bounds) to stop mem-
ory corruption. However, because pointer bounds are address pairs,
a straightforward implementation of fat pointers will, at the very
least, triple the size of pointers, thus increasing cache pressure and
memory overhead.

To reduce the overhead from the pointer bounds, recent works
adopt bounds compression, which exploits the redundancy among
the upper address bits of the pointer and the bounds [13, 28]. Prior
work has observed a 10% runtime reduction and a 30% DRAM
traffic reduction on average from large programs after deploy-
ing bounds compression [28]. However, when the redundancy in
high address bits is insufficient to represent the full bounds accu-
rately, the bounds compression scheme will either fail [13] or will
over-approximate the bounds [28], creating opportunities for unde-
tectable memory corruption. Fundamentally speaking, because the
compressed bounds must have a fixed size for efficient retrieval, the
bounds compression scheme must be lossy in certain conditions
regardless of the encoding. The accuracy loss will become worse
when there are fewer bits available for compressed bounds com-
pared with object size, for example (1) when the system is 32-bit
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instead of 64-bit, or (2) the scheme squeezes additional metadata
along with the compressed bounds into a single word [28].

While prior work proposes mitigation techniques for the bounds
accuracy loss, none of them can address all the security and per-
formance concerns. Taking CHERI as the example, although the
allocation bound overflow can be mitigated by padding the alloca-
tions so that only unused memory gets accessed, CHERI provides
no mitigation for sub-allocation bound overflow [11]. This means
it is possible to corrupt adjacent struct fields from an array inside
the struct if the array is large enough. To address sub-allocation
overflows, the scheme needs to modify the object memory layout
to insert padding around array members, which can break com-
patibility with external code. Modifying the allocator and padding
memory can also incur non-negligible memory overhead [9]. In
addition, these mitigation techniques cannot stop access to padded
memory. If an application contains an access control module (either
for software resources like devices or for physical assets) and the
permission data is stored in an array, interpreting the content in the
padded memory as valid permissions can result in a compromise. It
is necessary to preserve the bounds checking accuracy to address
all the security concerns above.

In this paper, we present MIFP (Mixed Inline Fat Pointer), the first
solution that ensures accurate bounds checking for bounds com-
pression schemes by selectively using uncompressed bounds. We
use whole-program static analysis to identify pointers for which
the current pointer bounds are not sufficient to accurately pre-
vent an out-of-bounds access, and then transform the program
so that these pointers carry uncompressed bounds for accurate
bounds checking®. MIFP is the first work that supports multiple fat
pointer representations simultaneously in a hardware-assisted fat
pointer scheme and selectively modifies pointer representation us-
ing compiler instrumentation instead of changing the programming
language rules.

The design of MIFP solves three key challenges: (1) functionality:
the algorithm should transform any fat pointer whose bounds in-
accuracy can weaken security; (2) correctness: the algorithm must
not introduce inconsistent object memory layouts in the presence
of pointers to aggregate types or other pointers, and (3) granular-
ity: the algorithm should not expand fat pointers that do not need
expansion for security. To solve the functionality challenge, we use
a value-flow-based abstract interpretation algorithm that uses solv-
able pointer properties (e.g., maximum bounds length) to find unsafe
pointers whose compressed bounds are inaccurate, then identifies
pointers along the dataflow to propagate uncompressed bounds. To
satisfy the correctness and granularity requirements, we propose
an extended points-to graph to support the analysis. The graph in-
tegrates the points-to information with dataflow and solves type
constraints from points-to relationships during graph construction,
therefore it can map pointers found by the abstract interpretation
to all pointers and objects affected by them. This property simplifies
using the abstract interpretation results for instrumentation. When
an aggregate type (e.g., struct) contains pointers, prior work trans-
forms all instances of the same aggregate type identically [19]. In
contrast, our extended points-to graph achieves per-allocation-site

!MIFP requires hardware modifications if the base scheme does not support uncom-
pressed bounds.
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granularity for transforming object types. To our best knowledge,
MIFP is also the first work that achieves per-allocation-site granu-
larity for such a type transform.

We built our prototype implementation for CHERI [28] on the 64-
bit RISCV platform and evaluated the prototype with 14 programs
from Olden, PtrDist, and CoreMark. The prototype implementation
incurs 8% run time increase and 2% memory usage increase from
the CHERI baseline in which the programs only use compressed
bounds. Compared with the 35% run time increase and 28% memory
usage increase for using uncompressed bounds only, by selectively
expanding only pointers that require the additional accuracy, and
enabling the mixed use of fat pointer widths within a program, MIFP
achieves the same security level as disabling bounds compression
but with only 21% of the performance overhead and 7% of the
memory overhead.

The contributions of this paper are:

e We describe MIFP’s whole-program analysis and transform
algorithm for utilizing multiple fat pointer representations
without programmer effort.

e We show the design of MIFP’s extended points-to graph, a
data structure that assists our algorithm, and we explain how
it helps solve challenges in our transform that are hard using
traditional dataflow analysis.

e We implemented MIFP based on CHERI on 64-bit RISCV
and we present an evaluation of MIFP with selected bench-
marks from Olden, Ptrdist, and CoreMark running on FPGA
implementation.

The remainder of this paper is organized as follows. First, Sec-
tion 2 provides the background and related work. Next, Section 3
presents the design of MIFP, including the analysis algorithm and
the extended points-to graph. Section 4 describes our implemen-
tation based on CHERI on 64-bit RISCV and Section 5 evaluates
the correctness and performance of our implementation. Finally,
Section 6 discusses limitations and strengths of MIFP and Section 7
concludes this paper.

2 BACKGROUND AND RELATED WORK

In this section, we introduce related work and the background. We
first describe fat pointers and bounds compression in Section 2.1,
then introduce CHERI [28] in Section 2.2, which is an example
fat-pointer scheme that the MIFP prototype builds upon. Next, we
compare MIFP with related work on pointer-based memory safety
defenses and program transforms in Section 2.3. Finally, we intro-
duce two graph data structures that MIFP builds on in Sections 2.4
and 2.5. We use the code example in Figure 3a throughout this paper
for consistency.

2.1 Fat Pointers and Bounds Compression

Fat pointer is a well-understood defense against spatial memory er-
rors. As shown in Figure 1, fat-pointer schemes associate a pair of ad-
dresses <base, top> with each pointer (originally only an address
value) that constrains the valid access range for the pointer, and they
can catch any dereference outside the range with bounds checks.
The bounds can either be stored next to the pointer [5, 28, 29] or
in distinct memory regions [6, 16, 17, 20]. While good for security,
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E 63 0 4T in2
- address [ 0x0...010 | 08 |/ | int32
. base[ 0x0..010 | 00 [} | int32
! top | 0x0..010 | 10 [~ | int32

. Fat pointer !

Memory

Figure 1: Example fat pointer pointing to a 4-element int
array at 0x1000.

pointer bounds impose additional memory and performance cost
for accessing and checking; efficiently performing these operations
can reduce the overhead of fat pointer schemes.

Bounds compression is based on the observation that the upper
bits of the address, base, and top have redundancy available for
compression. In the example in Figure 1, for an array with four
32-bit integers, only the lowest 5 bits of the address and the bounds
differ, and all the upper bits are redundant. Therefore, only the lower
bits of base and top are necessary to encode the bounds; the upper
bits can come from the address. Bounds compression schemes
typically use a fixed-width floating-point style encoding, with the
“significand” part representing the lower bits of base and top, and
the “exponent” representing the start position of the encoded lower
bits. This compression strategy usually works well because most of
the allocated objects are small [3, 34], so the number of differing
lower bits among address, base, and top are limited.

2.2 CHERI
127 64 63 0
Capability‘ Metadata ‘ CBounds ‘ Address ‘
63 0 .

‘Base‘o}—‘

| Addr (HighBits) | Top | 0 }—‘

<>
Exponent

| Addr (High Bits)

Bounds

obj

Figure 2: Simplified view of CHERI Compressed Capability
Encoding.

CHERI [28] is a hardware-assisted fat pointer scheme with bounds
compression. Figure 2 shows a simplified view of CHERI’s fat
pointer (referred to as capability pointers). These fat pointers can
reside in registers, and user-level instructions are available to ma-
nipulate them. Bounds checking is part of the semantics of load and
store instructions in CHERI, so normal code does not need explicit
bounds checking instructions. The compressed bounds (CBounds
in the figure) encode (1) the lower bits of base and top for the start
and end address of the permissible range, and (2) an internal expo-
nent representing the starting position of the bounds bits. CHERI
uses dedicated instructions that update the compressed bounds
during pointer arithmetic. If a pointer arithmetic operation pushes
the address so far away from the original bounds that the original
bounds cannot be encoded, it invalidates the capability. When the
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bounds length (top - base) is small and the pointer is in bounds,
the internal exponent will be zero and the bounds are accurate.
However, when the bounds length exceeds a representable limit,
the compressed bounds cannot encode all distinct lower bits of base
and top, so the internal exponent will be non-zero and the lower bits
of the computed base and top will be zero-filled. In this case, if the
object’s start or end address is not sufficiently aligned, the bounds
will cover the extra memory before or after the object (the grey
zone in Figure 2), where out-of-bounds accesses can evade checks.
If these memory ranges happen to store critical data, the attacker
can read or corrupt them silently. On a 64-bit system, a 128-bit
capability can start to enlarge bounds when the object size exceeds
4096 bytes; an array of 4097 bytes will leave 7 bytes over the upper
bound unprotected [11]. The CHERI paper suggests padding the
allocations in the dynamic allocator so that out-of-bounds accesses
to the padded memory are benign.

Besides spatial memory safety, CHERI also implements other
security policies. (1) Pointer Integrity with tagged memory: all
capability registers and each capability-aligned word in memory
has one tag bit indicating whether the location contains a capability
and the instructions can check or manipulate the tag bit to detect
corruption of capabilities. (2) Capability model: CHERI includes
additional metadata (represented as Metadata field) on pointers
to enforce fine-grained memory access control policies, including
software compartmentalization. However, while CHERI can enforce
additional security policies with the additional metadata bits, it also
reduces the available bits for compressed bounds, which makes
bounds accuracy loss worse.

2.3 Related Work

Storing bounds inline with the pointer like CHERI does has a perfor-
mance advantage compared with other approaches because of the
spatial locality of the pointer and bounds. With bounds compres-
sion, CHERI can use a single memory access to load the entire fat
pointer, achieving the minimal load-to-use delay. However, because
pointer bounds occupy extra space and object memory layouts may
need modification, fat-pointer-enabled code can be incompatible
with legacy binaries. It is also challenging to selectively transform
pointers without breaking the program. Shakti-MS [5] transforms
all pointers in the program into fat pointers. CHERI [28] either
compiles all pointers to fat pointers, or only pointers with program-
mer annotation?. CCured [19] uses a type inference algorithm in
the compiler frontend to assign different types to pointers on a
per-pointer basis so SAFE pointers are left unmodified while other
types carry extra metadata. However, if a pointer is declared inside
a struct type, the type inference algorithm of CCured does not
distinguish between the pointer values in different struct instances,
so all parent objects with the same source type will also have the
same result type. This also means that if one pointer member in
a struct is considered unsafe and now carries metadata, all struct
instances will reserve space for the metadata, even if the pointer is
never accessed in other instances. Compared with CCured, MIFP
can transform fewer unnecessary pointers; our algorithm can trans-
form objects with the same source type differently depending on
how they are used.

2Corresponding to CHERI’s pure-capability mode and hybrid mode, respectively.
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Besides transforming pointer layouts, recent work on compiler
optimizations also pursues more efficient bounds checking. A pro-
gram instrumented with WPBound [31] skips the bounds checking
in a loop if it passes an instrumented stronger check outside the
loop. PICO [12] consolidates bounds checking so that fewer checks
are needed and places them at less frequently executed locations.

Another popular approach for maintaining bounds is to store
them in disjoint memory locations. This reduces the compatibility
problem with legacy code because object memory layouts do not
need modification, but at the cost of extra overhead from locating
bounds for each pointer. Intel MPX [20] uses a two-level directory
structure to map the address of each pointer to the address of its
bounds, and after loading a pointer, the program needs two extra
non-contiguous loads to retrieve the bounds. WatchdogLite [16]
uses a linear mapping from pointer to metadata address, so it only
uses one extra load for the bounds at the cost of wasted virtual
address space.

One extreme of bounds compression is to perform aggressive
lossy compression such that the bounds fit into the unused high
address bits on a pointer. These on-pointer metadata bits are re-
ferred to as pointer tags. Low-Fat Pointer [14] carefully places
objects and adds padding so that the pointer can be checked using
the on-pointer metadata from the high address bits. Later works
like FRAMER [18], In-Fat Pointer [30], and HeapCheck [22] use the
pointer tag to locate another in-memory metadata for more accurate
checking. Another use of pointer tags is to implement probabilistic
memory safety checks with memory tagging [24]. ARM MTE [2]
associates every 16-byte memory with a 4-bit tag, and each pointer
can carry a 4-bit tag in the high bits. During a dynamic allocation,
the allocator assigns the same 4-bit value to the pointer and the al-
located memory. Therefore, the hardware can detect out-of-bounds
access by checking whether the pointer tag and the memory tag
match.

Existing work has explored extending memory padding to miti-
gate sub-allocation bound overflow. Califorms [23] inserts padding
between struct fields to detect such overflows. No-Fat [9] uses struc-
ture splitting [8, 21, 32] to promote arrays in structs into separate
allocations so that the sub-allocation bound overflow can be miti-
gated similarly by padding these array allocations. No-Fat reports
a 6.66% memory overhead for the allocator change [9].

2.4 Points-to Graph

A points-to analysis can produce a points-to graph to describe
the relationship between pointers and objects in a program. MIFP
adapts the recent cell-based field-sensitive (CFS) points-to anal-
ysis [27] for analysis and transform. Figure 3 shows an example
CFS points-to graph. We highlight the essential nodes and edges
representing memory states with the grey box. Nodes #8-13 help
show the relationship between the points-to graph and subsequent
graphs including the SVFG (Section 2.5) and MIFP’s extended ver-
sion (Section 3.2).

In Figure 3b, nodes without incoming edges represent pointer-
typed program expressions, including nodes #1-3 representing ob-
ject allocations (referred to as source nodes) and nodes #8-13 repre-
senting pointer values in the program. The rest of the nodes (#4-7)
represent alias groups, which are sets of indistinguishable memory
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1 struct T { intx array; int data; };

2

3 int foo(struct T*x p) {

4 return p->arrayl[rand()];

5}

6

7 int main(int argc, char*x argv) {

3 struct T objl1, obj2;

9 struct T* obj = rand()%2 ? &objl &obj2;
10 size_t size = sizeof(int)xargc*x1000;
11 obj->array = (intx*) malloc(size);

12 memset ((void*)obj->array, 0, size);
13 return foo(obj);

(a) Code Example

#8 obj [@main]

| #pl@foo]
-

|

|

l #10 &p->array [@foo] ‘

»

' | #11 (int*) malloc [@main] |

G
‘ T m— N * ‘il #12 p->array [@foo] ‘
[.('m)ma oc Wﬁ #13 &p->array[rand()] [@foo] |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1
source alias groups (cells) expressions

(b) Graph Representation

Figure 3: CFS Points-to Graph

locations (or abstract objects). In addition, alias group nodes in CFS
analysis are typed, and they are named cells. Each node can have
(1) points-to edges from pointer to pointee (shown as dashed
arrows) and (2) contains edges from aggregate type objects (e.g.,
structs and arrays) to the member fields (shown as solid arrows).
For example, node #4 represents the struct T for both obj1 and
obj2 allocated at line 8, so there are points-to edges from #1 and
#2 to node #4. The shared struct T contains the array and data
member, therefore the two members are represented by distinct
nodes #5 and #6 with contains edges from node #4. Nodes #8-13
outside the grey box represent scalar pointer values, so they only
have points-to edges to cell nodes.

One important property of a CFS points-to graph is that each
node has at most one outgoing points-to edge. If a pointer can
point to multiple cells, those cell nodes will be merged. For example,
since obj at line 9 can either point to the obj1 or obj2, the graph
construction algorithm will merge the cell node for struct T from
obj1 and the node for obj2. Therefore, there is a single node #4
representing the struct T for both of them.

2.5 Sparse Value-flow Graph

A sparse value-flow graph (SVFG) for pointers describes the inter-
procedural value flow (similar to SSA’s def-use chain) of all pointers.
It combines the value flow directly available from the program
source (i.e., def-use chain in LLVM IR) and from analysis results
that look through function calls and memory load/stores. The MIFP
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| #1 Addr: struct T* &objl | | #2 Addr: struct T* &obj2 |

AN

I #8a IntraPHI: struct T* obj |

| #3 Addr: void* malloc(...) |

I #11 Copy: int* malloc(...) |

I GEP: int** &obj->array |

#8b ActualParam: struct T* obj
value addr ¢

Store: int* obj->array | #9 FormalParam: struct T* p

I #10 GEP: int** &p->array |

Store: memset - / addr
N | #12 Load: int* p->array |

GEP: memset

| #13 GEP: int* &p->array[rand()] |

: / addr

4
Load: int p->array[rand()] |
v

FormalRet

Figure 4: Sparse Value Flow Graph (SVFG)

implementation uses the SVF [25] library to perform points-to
analysis and produce an SVFG for subsequent analysis. Figure 4
shows a simplified SVFG created from the code in Figure 3a. Each
node represents a value, a memory location, etc. at one program
location, and each edge represents a value flow. If an SVFG node
corresponds to a pointer value in Figure 3, we use the same node
index for the SVFG node. If an SVFG node does not map to any
node in Figure 3, we leave it unlabeled.

For each memory allocation in the program, SVF creates an addr
node (plotted in green boxes) to represent a pointer to the allocated
memory. For example, nodes #1 and #2 represents the address of
obj1 and obj2, and node #3 points to the dynamic allocation of
int at line 11. The copy node #11 represents the pointer cast on
the return value of malloc(). The IntraPHI node #8a represents
the result obj being selected from either &obj1 or &obj2. Pointer
arithmetic or struct member address computation is represented
by GEP nodes, shown as purple boxes. For each load and store, SVF
also creates load and store nodes (red and blue boxes respectively)
representing the value being loaded or stored. Therefore, the single
statement at line 4 is decomposed into (1) compute the address of
the array member from p (node #10), (2) load the array pointer
(#12), (3) compute the address of the indexed array element (#13),
(4) load the array element, and (5) return it. SVFG uses direct edges
(plotted in solid black lines) in the graph to represent direct value
flows in the source program. Each store node can have two incom-
ing direct edges, one for the address of the store, and the other for
the value being stored. For example, the unlabeled store node to
obj->array takes the value from node #11 and the address from the
unlabeled GEP node &obj->array below node #8a. Each load node
only has one incoming direct edge representing the address. Besides
direct edges, SVFG contains indirect edges representing value flows
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through memory or indirect function calls. SVF plots indirect edges
in dashed lines. For example, the path from the unlabeled store to
obj->array to load #12 means that the stored value can reach that
load. These incoming indirect edges to load and store nodes repre-
sent all possible values that can be read by the load or overwritten
by the store. Yellow boxes represent inter-procedural values like
function parameters (ActualParam/FormalParam), return values
(FormalRet), and memory locations®. FormalXXX represent callee-
side values (e.g., formal parameter p at node #9) and ActualXXX
represent caller-side values (like passed parameter obj at node #8b).

2.6 Value Flow Analysis

MIFP uses multiple (sparse) value flow analyses on SVFG to solve
certain properties on pointers using abstract interpretation. This is
similar to traditional abstract interpretation or dataflow analysis
except the algorithm runs on a value flow graph (e.g., SVFG or
LLVM def-use chains) and handles one value at a time, instead of
on a control flow graph where we handle all values in the basic block
in each iteration. Assuming we perform value flow analysis on the
SVFG shown in Figure 4, we will associate a variable x with each
pointer-type SVFG node. The analysis involves (1) initializing the
variables x for each node, (2) selecting analysis-dependent starting
nodes and adding them to a worklist, and (3) running the main
loop until the worklist is empty. In the main loop, the algorithm (1)
pops one node from the worklist, (2) updates the variable of other
nodes with value flow edges to the popped node, and (3) if any
node has the variable changed, adds them to the worklist. We use
two minimal examples based on the code in Figure 3a to explain
the algorithm.

Forward analysis. Assume we want to derive a statically safe
constant range for each pointer so that later on we can check if a
pointer dereference is safe by comparing the accessed range with
this statically safe range. For example, we want to prove that loading
p->array at line 4 in Figure 3a (node #12) is always safe because it
must be within a valid struct T object. For simplicity, we focus
on the value flow path from #1, #2, #8a, #8b all the way to #12. The
variable x for each pointer will be either a constant interval [a, b)
representing the safe range of bytes or a special unknown value. If
a pointer is initialized by external code, we conservatively assign
[0,0) as the safe range. Initially, all pointers have an unknown safe
range except node #1 and #2 which have [0, 12), assuming 8-byte
pointers, 4-byte int values, and struct T is 12 bytes in size. The
worklist is initialized with {#1, #2}. Assuming a FIFO worklist, in
the first iteration, node #1 is popped and node #8a copied the safe
range [0, 12). Node #8a is also added to the worklist because its safe
range is updated. In the second iteration, node #2 is popped and
the algorithm will compare its safe range with Node #8a. Because
their safe ranges are identical, no change is made. In the following
iterations, the safe range [0, 12) will be copied to node #8b, #9, #10
in this order. We can show that load #12 is safe because the accessed
range [0, 8) is within the range [0, 12).

Backward analysis. Assume we conclude that loading the int
from p->array at arandom index is not statically safe so the address

3Nodes not essential in the example are omitted from the figure, including
ActualIn/Formalln, ActualOut/FormalOut, and ActualRet nodes.
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pointer represented by node #13 needs bounds. Suppose we want
to insert accurate checks for pointer dereferences which are not
statically safe, and we use a naive backward analysis to find which
pointers should be expanded to carry bounds. We focus on the path
from node #3, #11 to #12 and #13. The variable x is an enum {raw,
fat} where raw means the pointer has no bounds and fat means
the pointer carries bounds. Initially, all pointers are raw except #13
because it is used in the potentially unsafe access, and the worklist
is initialized with {#13}. In each iteration of the loop, for a fat
pointer node, we change all source pointer values to fat as well.
Therefore, node #13 will cause #12 to be fat in the first iteration,
and pointers along the way till node #11 and #3 will be fat in
subsequent iterations. Other nodes outside the path are not affected
because they do not represent the same pointer value. For example,
node #10 will not be fat although node #12 is fat because the load
itself is safe so the address requires no checking; only the loaded
pointer should be expanded with bounds. Note that the described
algorithm is incorrect on its own because it cannot identify all
pointers in memory that must be expanded; Section 3.2 provides
the fix.

3 DESIGN OF MIFP

Given any fat-pointer defense with compressed bounds support,
MIFP’s goal is to maintain the performance benefit of bounds com-
pression without losing accurate bounds checking. MIFP achieves
this by identifying all pointers whose bounds may be inaccurate and
miss out-of-bounds accesses, and transforming these pointers to
have uncompressed, fully accurate bounds. If an expanded pointer
is address-taken, embedded in other objects, or passed as function
arguments or return values, MIFP also modifies all affected code to
accommodate the extra bounds. Section 3.1 gives the overview of
the algorithm.

MIFP stores uncompressed bounds inline with the compressed fat
pointer for efficiency. However, it is difficult for compiler transforms
to modify memory layouts of address-taken objects because the
transform would need to find and update all code accessing the
object using the original layout. To solve this challenge, MIFP uses
the extended points-to graph to track the object memory layouts in
the compiler IR and guide the subsequent transforms. Section 3.2
describes the extended points-to graph in depth.

There are two components in MIFP’s implementation: (1) whole-
program analysis and transform to reserve space and insert instruc-
tions for the uncompressed bounds, and (2) support for assembling
and executing instructions related to uncompressed bounds in the
fat-pointer defense (if not already present), including modifying
(a) the compiler backend and (b) the execution environment like
QEMU or hardware. Since uncompressed bounds support is specific
to the fat-pointer defense, in this section, we focus on the analysis
and transform algorithm. Details of the uncompressed bounds sup-
port in our prototype implementation for CHERI on 64-bit RISCV
are described in Section 4.

Limitations. In the extended points-to graph, our MIFP proto-
type uses LLVM IR types on cell nodes to represent the memory
layout of objects. Unions and arbitrary pointer casts are not fully
supported because LLVM IR does not contain union types and our
prototype has limited support for conflicting types. Section 6 lists
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additional design or implementation limitations that may impact
certain applications.

Terminology. In the rest of this paper, a pointer’s width type
denotes the bounds representation of this pointer (i.e., having
compressed bounds, uncompressed bounds, or no bounds). A raw
pointer has no bounds. We say a compressed fat pointer is wider
than a raw pointer, and an uncompressed fat pointer is wider than
the other two. Expanding a pointer means changing the width type
of the pointer to a wider and thus more accurate one (likely to
an uncompressed fat pointer). A pointer’s type includes both the
width type and the element type (i.e., the type of data it points to).
Because the types of pointers and objects determine their memory
layouts, we transform the types of these program constructs when
expanding pointers.

3.1 Overview of MIFP Whole-program
Transform

Algorithm 1 MIFP whole-program transform

M « ReadIR() {Read the input IR}
G « BuildGraph(M) {Build extended points-to graph}
P, « FindUnsafePtr(M,G) {Step 1}
D:Vp(G) > W 0 {Pointers to expand}

S : Vptr(G) = W « BoundsAccuracy(G, M, D) {Step 2}
repeat
D « FindExpandingPtr(G, M,S N Py, D) {Step 3}

S « BoundsAccuracy(G, M, D)
untilSNP, C D
T «— EmitTypes(G, M, D)
M’ « Instrument(M,G,T)
Write M’

{Rerun step 2}
{Loop until converge}
{Step 4}

{Step 5}

{Output transformed IR}

MIFP introduces a new whole-program transform on the com-
piler intermediate representation (IR) to make space for uncom-
pressed bounds and to insert manipulation and checking instruc-
tions in user programs. Performing the transform in the IR stage
enables MIFP to reuse existing compiler analysis passes to decide
which pointers to expand. First, after all the source files are com-
piled into IR, we collect all of them and create a whole-program IR.
Then, MIFP algorithm reads the whole-program IR and applies the
whole-program transform to it. The output IR can then be passed
to later compilation pipeline stages.

Algorithm 1 shows the overall procedure of the transform. W
represents the set of all width types (raw pointer, compressed fat
pointer, and uncompressed fat pointer), and Vp(G) represents
all pointer-type nodes in the graph. Before the whole-program
transform starts, we first build a new graph structure called extended
points-to graph, and then run the rest of the transform that depends
on the graph. To better explain the problems this graph solves,
in the rest of this subsection, we will first discuss the goal and
methodology of each stage in the algorithm and then formally
introduce the graph in Section 3.2. Because the extended points-to
graph contains nodes representing pointers and objects and can
map any pointer in the program to one of the nodes, the discussion
below will use “a pointer” to refer to “a pointer-typed node in
the extended points-to graph”. Note that while the pseudocode in
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Algorithm 1 shows all intermediate states as distinct maps and sets,
we can implement these states as node attributes in the extended
points-to graph.

Step 1: find unsafe pointers. The first step of the algorithm in
Algorithm 1 needs to identify pointers used in dereferences that
cannot be proven statically safe. These pointers are assumed unsafe
and are put into the set P, for later checking. We use the approach
from earlier work [1]: first solving a safe range for each pointer
from object allocations, then checking each dereference against the
range. This is similar to the forward analysis example described in
Section 2.6.

Step 2: solve bounds accuracy. After finding all unsafe pointers,
step 2 determines whether each pointer is wide enough so that
bounds are always accurate for checking. In Algorithm 1, the result
of step 2 is a partial mapping S that maps each pointer in it to
the minimum accurate width type that ensures bounds accuracy.
Only the pointers not wide enough in the input program will be
present in S. Therefore, S N P, represents unsafe pointers that
require expansion. Because we will find pointers for expansion (D)
in step 3, which can in turn change the type size of elements/objects
that contain such pointers and invalidate the results computed in
this step, we run steps 2 and 3 iteratively until no more pointers
require expansion (S N P, € D). When initializing the maximum
bounds length from allocation sizes, the code will consider the type
change due to pointer expansion (available after step 3) starting
from the second iteration.

Finding the minimum accurate width type is inherently specific
to the bounds compression scheme. For our implementation on
64-bit RISCV with CHERI, we use a forward analysis to compute
the fixed-point solution of (1) maximum bounds length b (non-
decreasing, co for unknown) and (2) minimum bounds alignment a
(non-increasing, 1 for unknown) for unsafe pointers, and when the
pointer uses compressed bounds, we assume the bounds are always
accurate if b < 4096 or b < a x 21°. For example, because CHERI
rounds up any bounds length between 4097 and 4104 bytes to 4104
bytes, the compressed bounds for a 4104-byte object are accurate
because the bounds are 8-bytes aligned, but those for a 4103-byte
object are not accurate because the bounds are only 1-byte aligned
and the length will be approximated to 4104 bytes. We start from
the allocation sites (which are also pointer sources), compute the
initial bounds length and alignment for pointers from allocations,
then use a forward analysis to solve the fixed point solution for
the remaining pointers. When computing the initial bounds length
for allocations, we walk the extended points-to graph to see if the
allocated type has any member pointer marked for expansion (i.e.,
the pointer is in D in Algorithm 1), and compute the new type size
when needed.

Step 3: find pointers for expansion. After we find unsafe pointers
whose bounds are not accurate enough (S N P,) we identify all
pointers that require width type expansion. The result D is a partial
map that contains all pointers that need expansion. To ensure the
uncompressed bounds can propagate from the pointer source (i.e.,
allocation sites) to the use sites, we use a backward analysis that
starts from the unsafe pointers at dereference site, traverses along
the value flow path toward the pointer source (allocation sites),
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and marks all pointers along the way for expansion including ones
without unsafe use. This is similar to the backward analysis exam-
ple described in Section 2.6. If the pointer is loaded from memory,
we expand the in-memory pointer and all pointers stored to the
memory location. If the pointer is a function parameter, we expand
all call site arguments to this parameter. This ensures that the accu-
rate bounds can reach the use site for checking. As described above,
steps 2 and 3 are run iteratively until we find no more pointers to
expand.

Step 4: emit types. Once all pointers requiring expansion are
found, we create the new types in the compiler IR for all program
constructs (including objects and function prototypes) that need
type changes. In Algorithm 1, the output is a map T from every
node (including non-pointer type nodes) in the extended points-to
graph to their new types. Because the algorithm heavily depends
on the extended points-to graph, we will describe it in Section 3.2.2.

Step 5: instrumentation. After all the previous analysis steps,
the last step is to apply all the transformations. This involves (1)
replacing the type of global variables and function prototypes, (2)
replacing the type of dynamic allocations and local variables, and
finally (3) updating the users of these values to use the correct type.
This step also involves defense-specific logic, like the representation
and manipulation of uncompressed bounds in compiler IR, and
inserting bounds checks that use uncompressed bounds.

3.2 Extended Points-to graph

There are two challenges in the algorithm that cannot be solved
with value flow analyses alone. These challenges lead to our design
of the extended points-to graph. We first describe the graph in
Section 3.2.1, then we describe how the graph assists the analysis
and transform in Section 3.2.2. Before further discussion, we first
list the encountered challenges below to highlight the motivation
for the graph.

Handling points-to constraints. When we transform the types
of pointers and objects in step 5, the transformation must satisfy
the following points-to constraint: each pointer should only point
to objects with a consistent type. In other words, if one points-
to object needs a type change, all the other points-to objects of
the same pointer should be changed consistently. In the code ex-
ample in Figure 3a, because the pointer p->array at line 4 can
either be obj1.array or obj2.array, the algorithm should either
expand both of obj1.array and obj2.array or expand none of
them. Otherwise, the element type of obj and p becomes inconsis-
tent because the array pointer inside the struct T instances have
different width types. If the inconsistency is allowed, later instru-
mentation will introduce type errors and create incorrect programs
because the memory layout of the points-to objects can be different.
Although walking the value flow can help us find the pointers to
expand, it alone cannot avoid all such inconsistencies. To solve this
problem, we need the points-to information of p so that expanding
either pointer can inform us to also expand the other.

Bridging pointer expansion and type change. Step 4 of the algo-
rithm needs to determine the static type of all program constructs,
including function prototypes and in-memory objects. Step 2 of the



RAID ’23, October 16-18, 2023, Hong Kong, Hong Kong

algorithm also needs to recompute the allocation sizes if there are
pointers getting expanded in the allocation. These tasks require
a new data structure that can translate pointer expansion to type
changes, including the type change of the pointer and all other
types depending on it. For example, if a struct type S contains a
pointer that needs expansion, not only does the struct type S need
to be transformed but also any pointers to the struct (Sx) and any
parent struct embedding the struct S. If a function takes a pointer
to the struct S, the function prototype also needs to change. The
new data structure must handle the chain reaction of type changes
so that the algorithm can compute the correct sizes in step 2 and
emit the correct types in step 4.

3.2.1 Graph Definition. To tackle the challenges in the algorithm,
MIFP designs the extended points-to graph to integrate value flows
with points-to information, and handle type inter-dependencies
for all program constructs like functions or in-memory objects.
The graph is designed to work with another value flow graph, for
example, the compiler IR in Static Single-Assignment (SSA) form or
the Sparse Value-Flow Graph (SVFG). Figure 5a shows an example
extended points-to graph from the code in Figure 3a. Essentially,
the extended points-to graph extends a CFS points-to graph in
Figure 3b with (1) additional expression nodes (not shown) and
edges from value flows and (2) function-type cells as if they are
structs with parameters and return values as members. The new
nodes are highlighted in the grey region.

Nodes. First, we have one source node on the left side of the
graph (node #1-3 and #14) for each variable declaration, object
allocation, and function declaration. This is the same as existing
points-to analyses that use allocation sites to name alias sets except
for new source nodes from function declarations. Next, we have
expression nodes on the right side (node #8 to #13) for pointer-type
program expressions. Besides expressions analyzed by the points-to
analysis, we also create nodes from the value flow graph (e.g., an
instruction producing a pointer in compiler IR or an SVFG node).
The remaining nodes in the middle (#4-7, #15-17) represent cells
(or alias groups) for in-memory data and function prototypes; each
cell node is a partition of all objects or functions in the program
with the same type. All cell nodes and expression nodes are typed
while the source nodes are not. The prototype implementation uses
the LLVM IR types for all typed nodes. The “pointer-type nodes” in
Section 3.1 refer to both cell nodes and expression nodes.

Edges. First, each source node has an edge to the cell represent-
ing the allocated type. This includes the edges from #1-2 to #4, from
#3 to #7, and from #14 to #15 in Figure 5a. In the extended points-to
graph, we treat function declarations as allocations as well, so func-
tion foo() has node #14 and its type in node #15. Second, similar to
existing points-to graphs, there are contains edges from aggregate
types (e.g., #4 for struct T) to members (#5-6 representing the
array and data field), and points-to edges to cell nodes from
expression nodes or other cell nodes. These edges are drawn with
solid black lines and dashed black lines respectively. Because we
treat function types as if they are aggregate types, we also create
cell nodes #16 and #17 to represent the parameter p and the re-
turn value respectively and add contains edges from #15 to both
of them. Lastly, the extended points-to graph includes value flow
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edges as well: store edges (blue) and load edges (red) connect the
cell and the pointer-type expression nodes being stored or loaded,
respectively. When there is a function call (e.g., at line 13), we add
store edges from each argument (#8) to the cell for the parameter
(#16), and load edges from the cell to the parameter expression (#9)
in the function body. The reverse is true for returned pointers; we
treat it as storing the formal return value to the cell and loading it
from the cell inside the caller.

Properties. First, we inherit the property from the points-to graph
that each pointer has at most one outgoing points-to edge. In
the example, because p can point to either obj1 or obj2, the two
objects will share the same cell node #4 so that p points to this
single cell node. This sharing also makes &—>array pointing to the
single cell node #5. Expanding node #5 expands both obj1.array
and obj2.array, so there will be no inconsistency between their
types. Similar to existing points-to analyses, we merge cell nodes
during graph building to enforce this constraint. Compared with the
traditional constraint-solving approach where points-to constraints
(e.g., the TYPEEQ constraint in CCured [19]) are solved roughly at
the same time with other constraints, the extended points-to graph
solves these constraints once during graph construction and no
subsequent analysis (step 3 and 4 of the algorithm) needs to handle
them again. After merging cell nodes for the points-to constraints,
any remaining cells can have pointer expansion and type change
results independently.

Second, the extended points-to graph captures all value flow
edges from function calls and memory loads and stores. In other
words, all value flows not directly available from the def-use chains
in the compiler IR will be captured in the graph. This ensures that
when we walk the value flow graph, whenever a pointer in memory
or a function prototype is visited, we must have a corresponding
node in the extended points-to graph. These common nodes connect
the value flow with points-to information so that our algorithm
can utilize both seamlessly.

3.2.2 Using the Extended Points-to Graph for Transform.

Changes to value flow analysis. All value flow analyses in steps
1-3 from Algorithm 1 are modified to work on a composite graph
that essentially merges the value flow graph (SVFG or LLVM def-
use chain) with the extended points-to graph. All pointer-type
nodes from the value flow graph can be added as expression nodes,
and we maintain the mapping from the expression nodes to their
backing value flow nodes. We discard non-pointer type nodes be-
cause we only analyze pointer value flows. The extended points-to
graph does not define edges between two expression nodes; all such
edges are from the value flow graph. However, if a value flow edge
maps to a load or store edge in the extended points-to graph, the
load or store edge in the extended points-to graph takes priority.
When performing the value flow analysis for pointers, we associate
variables to pointer-type cell nodes and expression nodes in the ex-
tended points-to graph. We query the value flow graph to get edges
between two expression nodes and query the extended points-to
graph to get edges between two cell nodes or edges between a cell
node and an expression node.

Finding pointers to expand (step 3) revisited. Figure 5b shows part
of the composite graph used by step 3 (Finding pointers to expand)
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Figure 5: MIFP Extended Points-to Graph and its Composition with SVFG

in Algorithm 1. The backward analysis example in Section 2.6 is
adapted to use the composite graph. We use the same code exam-
ple from Figure 3a and plot the extended points-to graph nodes
and SVFG nodes side-by-side if they are related. The expression
nodes and cell nodes enclosed by the dashed box (except node #7
representing the point-to object) represent the pointers that will be
labeled for expansion at the end of the backward analysis. When
step 3 starts, because the load on &p->array[rand[]] is unsafe
and the compressed bounds may not be accurate, node #13 will be
marked as requiring expansion and enqueued to the worklist. In
the first iteration, the algorithm walks the edge from Load to GEP,
marks node #12 for expansion because node #13 will be expanded,
and enqueues node #12. Because the graph creation algorithm maps
the SVFG edges from #11 to #12 to edge #11 to #5 followed by edge
#5 to #12, in the second iteration, the algorithm walks the load
edge from #5 to #12 and updates #5. Then, in the third iteration,
node #11 is updated from node #5. This allows the algorithm to
identify that the pointer represented by node #5 requires expan-
sion. If there are other pointers sharing the same cell #5 because of
points-to constraints, the use of the decomposed load or store edges
in the extended points-to graph instead of the corresponding SVFG
edges ensures that this algorithm can expand all these pointers
consistently even when SVFG does not contain edges connecting
these pointers. After finding the pointers to expand, the algorithm
recomputes the allocation size for each object allocation (node #1
and #2, not shown here) by walking the extended points-to graph,
and the results converge.
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.~ points-to
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array - -
U
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Figure 6: Subgraph for emitting types

Emitting types (step 4) with extended points-to graph. To deter-
mine the new types for objects and function prototypes, step 4
of the algorithm uses the subgraph with only cell nodes as a con-
straint graph and solves the new types for all cell nodes in the

subgraph. Figure 6 shows the example subgraph continuing with
the previous example. This subgraph preserves all the contains
edges and points-to edges between the cell nodes, and these edges
also describe the type dependency among the cells. Because the
extended points-to graph merges all cell nodes whose type must be
consistent, each of the cell nodes left can have type changes inde-
pendently after the transform. In this example, initially, the pointer
represented by node #5 will be expanded to carry uncompressed
bounds (represented by Ux). Because struct T represented by node
#4 contains #5 as a member, this struct is modified to struct T1
that includes the wider array pointer. This leads to the type change
of node #16 to struct T1x and subsequently the change of node
#15 to int(struct T1#%). With these new types solved, the sub-
sequent instrumentation step can apply these type transforms to
make space for the uncompressed bounds.

4 APPLYING MIFP TO CHERI

In this section, we present the implementation of MIFP based on
the 64-bit RISCV implementation of CHERI [28]. The compiler
toolchain is based on CHERI’s fork of LLVM 13. The implementa-
tion targets CHERI's pure-capability mode, where there are no raw
pointers in the application code. All pointers are fat pointers with
compressed bounds before the transformation. We implemented
the whole-program analysis and transform as a standalone tool
using the SVF library [25], and we used scripts to integrate the
transform with the compilation procedure. The prototype imple-
mentation supports C programs and works only for applications
free of bad casts. We modified CHERI LLVM’s RISCV backend to
support generating new instructions for uncompressed bounds. We
also modified the QEMU and CHERI’s Flute processor core so that
the instrumented programs can run on QEMU or FPGA.

4.1 ISA Extension

To reduce hardware costs, instead of doubling the maximal ca-
pability size, we represent the uncompressed bounds as a distinct
capability-sized value that takes an extra register. For 128-bit CHERI
capability on 64-bit RISC-V, the uncompressed bounds are also 128
bits in size. We added following instructions to utilize uncompressed
bounds:
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e csetboundsfull[imm]: Create uncompressed bounds from
a base address and a bounds length value.

e cboundscheck: Perform bounds checks against uncompressed
bounds.

CHERI has csetbounds and csetboundsimm instructions to create
capability pointers with specific bounds, and the new instructions
csetboundsfull and csetboundsfullimm work in parallel with
them, except that the new instructions create uncompressed bounds.
cboundscheck is a new instruction that takes an address (a base
capability pointer and an immediate offset) and the uncompressed
bounds as input for accurate bounds checking. We define multi-
ple variants of cboundscheck instructions for checking different
memory access sizes (1/2/4/8/16 bytes). If the size is irregular (e.g.,
because of operations like memset ()), the compiler will break the
check into two checks that check the first and last byte respectively.
We use CHERI's existing capability load/store instructions to load/-
store uncompressed bounds. All new instructions are available to
user-level code, and no change to the privileged software is made.

To add the ISA extension to CHERI’s Flute processor, we modified
91 lines of Bluespec SystemVerilog code in the CPU codebase. Most
of the changes are in the decoder and the ALU. These changes take
1,121 extra LUTs (+1.6%) in the CPU. We find that the modifications
do not affect the maximum clock speed as they are not on the
critical path.

4.2 Compiler Support

In LLVM IR, we represent uncompressed bounds as separate values
from the corresponding capabilities: for each capability pointer
to type T (represented as T%), if it needs uncompressed bounds,
we create another value void* as the uncompressed bound that
propagates with T*. We add intrinsic functions for each new in-
struction that the whole-program transform can use to insert new
instructions.

Extending Capabilities in Memory. When a capability pointer
T* in memory needs uncompressed bounds, we replace the type
of the pointer with a struct S{T*,void} that contains both the
original capability pointer T* and the uncompressed bounds void#.
Loads and stores of capability pointers are extended to also load or
store the uncompressed bounds. Any double pointers pointing to
it (originally T**) are also modified to point to the struct instead,
which becomes S*.

Extending Capabilities in Call and Returns. If a capability pointer
is passed through a function call/return and it requires uncom-
pressed bounds, we modify the function prototype and create extra
arguments for the uncompressed bounds. If a capability pointer
argument needs expansion, we create a new void* argument to
pass the uncompressed bounds. If the return value is a capability
pointer requiring expansion, we create a voidx#* argument so that
the callee can store the uncompressed bounds before returning,
and the caller can load it after the return. Passing uncompressed
bounds for variadic arguments is not supported in the prototype
implementation.
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4.3 Practical considerations

Besides the algorithm explained in Section 3, extra work is needed
to make the transformed programs work. In this subsection, we
describe fixes and workarounds for the problems we encountered.

Type size update. Changing the types of all values in the compiler
IR alone is insufficient because size values derived from the types
also need adjustment to make the program work. For example, dy-
namic allocators take size arguments for allocation, and functions
like memset () and memcpy () also take size operands for memory
manipulations. To transform the type of objects, we also need to
update the arguments of these function calls. During the instru-
mentation, our prototype implementation will (1) use heuristics to
identify such uses of type sizes, (2) analyze the size argument and
decompose it into a linear form Ax + C where A, C are constants
and x is an unknown, and finally (3) replace the size with the new

value A’x+C’ where A’ = Axk,C' =Cxk,and k = :;izg;%
is the type size ratio of the destination type and the source type.
This heuristic can fail if the program uses the flexible array member
feature in C, or if the allocation size is computed outside the func-
tion (e.g., the function is a wrapper for functions like malloc()),

but it is sufficient to run all programs used in the evaluation.

Type metadata. Our prototype implementation uses the LLVM
IR type system for cell nodes and expression nodes in the extended
points-to graph, and this type system works well for the type-safe
subset of C language. However, because compiler optimizations
run before our algorithm, they can destroy the type information
and create arbitrary casts, preventing the algorithm from correctly
identifying object types. To work around this problem, we modified
the Clang frontend to add additional metadata for the types of
allocated objects and also added a transform to correct the types in
LLVM IR before building extended points-to graphs.

Compatibility with external code. Although the transform takes
the whole-program IR as input, there is always external code (likely
library functions) that the transformed program has to be compati-
ble with. When building the extended points-to graph, we imple-
ment an extra analysis that identifies all cells accessible by external
code, and we prohibit type changes on these exposed cells. Also,
because exposed cells are “roadblocks” that stop us from propagat-
ing uncompressed bounds from allocation sites (pointer sources) to
downstream pointers along the value flow, we only need to compute
bounds accuracy information for reachable pointers from alloca-
tion sites. Therefore, when running the forward dataflow analysis
in step 2 of the transform (solving bounds accuracy), we stop the
traversal when reaching an exposed pointer: only pointers that are
safe to expand will have the bounds accuracy information and get
checked for expansion. In our evaluation, the number of unsafe
pointer uses that cannot result in pointer expansion is less than
10% of all unsafe uses in almost all programs.

Handling dead code. The whole-program IR can contain dead
code, either from the source program or because of the function
inlining. However, dead code can call other functions and pass
pointers to them. In our implementation, some pointers in dead
code will not have points-to targets (i.e., no outgoing points-to
edges) because no code path would pass pointers to them, and these
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pointers and the transform would not impact each other. However,
when we change the parameter or return value types of callee
functions, the pointer types in the dead caller can be stale, creating
errors when we transform all call sites for the callee. Our prototype
implementation inserts syntactically correct code with runtime
aborts at these code locations to pass the IR validation, and no such
aborts get executed during our evaluation.

5 EVALUATION

We evaluate our MIFP implementation to measure how well it pre-
serves the runtime and overhead reduction of bounds compression.
We run all programs on our FPGA prototype with the modified
Cheri-Flute soft core running CheriBSD (based on FreeBSD 14.0).
We use Digilent Genesys 2 FPGA board, with a Kintex-7 XC7K325T-
2FFG900C FPGA chip and 1GB of DDR3 RAM. The processor is
single-core and runs at 25MHz.

5.1 Benchmark Programs

We choose 8 programs from Olden, 5 programs from Ptrdist, and
the CoreMark benchmark as testing programs. Olden’s voronoi is
excluded because the program makes assumptions on data layout
and the unmodified baseline does not work. Olden’s bh is excluded
because (1) the code relies on structural equivalence, which leads
to bad casts in LLVM IR, and (2) our prototype currently does not
support the downcasts used in bh. We modified Olden’s mst to work
around bad casts introduced by the LLVM SROA optimization. We
modified CoreMark to (1) disable the CRC check on the memory
block because it makes assumptions on memory organization and
even the original CHERI version cannot pass the check, (2) remove
the custom memory allocation which our prototype cannot analyze
by replacing the allocation code withmalloc() calls, and (3) remove
unnecessary bad casts that break our analysis.

coremark contains benchmarks for linked list operations, and
when modifying list node allocations in core_list_init(), we
allocate all list nodes in a single malloc() call and all list data in
another malloc(), so that the change needed to make the trans-
form work is minimal. However, because the analysis cannot prove
the pointer arithmetic in the linked list initialization to be safe?,
both the node pointer and the data pointer in the linked list get
expanded. To make a fair comparison, we make another version
coremark-mifp which allocates each linked list node and data
block in distinct malloc() call so that the pointers in the linked
list are not expanded. All statistics will include the results of both
coremark and coremark-mifp.

We measure the runtime and memory usage of 3 versions of
each program:® (1) baseline, where the program is compiled in
CHERI pure-capability mode without running MIFP transform and
all fat pointers use compressed bounds, (2) mifp version, where we
run the transform to selectively use uncompressed bounds, and (3)
wide version, where we expand all possible fat pointers to use un-
compressed bounds regardless of bounds accuracy or whether the
access is statically safe. The baseline version is the lower bound

“4In our prototype, LLVM Scalar Evolution cannot analyze IR values that are CHERI
capability pointers.

SBecause of the porting effort required, we cannot evaluate MIFP against related works,
e.g. CCured.
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of overhead, and we use the wide version to estimate the upper
bound of overhead if the bounds compression is disabled because of
security concerns. The memory usage is taken from the maximum
resident set size reported by /usr/bin/time -al.Because our im-
plementation instruments an additional cboundscheck instruction
for bounds checking without hoisting, the runtime increases of the
mifp and wide versions are upper bound estimates, but we expect
the memory usage increases to be accurate.

5.2 Correctness Verification

During the evaluation, the prototype implementation performs no
pointer expansion in 8 out of our 14 benchmark programs; either be-
cause pointer uses are statically safe or the compressed bounds are
already accurate. To better understand the program behavior and
validate our analysis, we also create a statistics collection version
of each program to (1) count the number of events listed in Table 1
(discussed in Section 5.3 below) and (2) perform runtime checks
that compare the actual length and alignment of bounds against
the maximal length and minimal alignment solved in step 2 of the
algorithm to validate bounds accuracy. We use a test script to feed
these programs with randomly generated input and run fuzzing
tests in our QEMU implementation. After 277 total executions, 1680
out of 2061 instrumented runtime checks from all programs get
executed at least once and no error is found. This confirms that
the vast majority of pointers do not require uncompressed bounds,
and our implementation is not missing pointers that should be
expanded.

5.3 Performance Evaluation

Figure 7 shows the increase in run time and memory usage of mifp
and wide versions of all programs. All overhead data is normalized
against the baseline version.

To better explain the evaluation results, we show the statistics
of all transformed programs in Table 1. The first three columns are
collected at compile time and describe the extent of the changes
that the instrumentation has made to the input programs. The
number of pointer uses that are ignored (column 1) describes how
the compatibility requirement with library code would impact the
evaluation results. Because these numbers are small compared with
the number of unsafe uses (column 2), we do not consider the com-
patibility requirement a threat to the validity of the results. The
number of expanded pointer-type cell nodes (column 3) is an esti-
mate of how many non-local pointer value declarations (including
global variables and pointers in struct definitions and function pro-
totypes) have the pointer type expanded. The last three columns
are collected at run time and explain the performance numbers.
The execution count of uncompressed bounds creation instructions
(column 4) is an indicator of the memory overhead. The number of
pointer loads and stores expanded (column 5) shows the memory
access increase due to wider fat pointers, and the ratio of explicit
bounds checks (column 6, the rightmost column) describes the per-
centage of bounds checks using uncompressed bounds after the
transform.

5.3.1 Run Time Increase. Figure 7a shows that the normalized run
time increases for all programs in the evaluation. The geomean is
8% for the mifp version and 35% for the wide version. This means
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Table 1: Statistics for benchmarks taking tranform

Benchmark Ignored Uses!® | Unsafe Uses™ | Expanded Ptrs® | Bounds Creation > | Ptr Ld/St widened? | Full bounds checks’
coremark 7 (3%) | 136 (53%) | 12 (39%) | 6 1.3%x107 (= 100%) | 2.5 x 107 (65%)
coremark-mifp | 7 (3%) | 24 (9%) | 6 (19%) | 4 6.0x10° (< 1%) | 8.1x 10° (32%)
em3d 5 (3%) | 33 (22%) | 6 (26%) | 1.2 x 10% 3.6 X 10° (15%) | 2.3 x 107 (71%)

mst 1 (2%) | 22 (37%) (24%) | 1.0 x 103 3.2 x 10° (19%) | 6.6 x 10° (23%)
anagram 11 (4%) | 19 (6%) | 3 (8%) | 4 5 (<1%) | 7.6 x 10° (23%)
be 61 (2%) | 730 (29%) | 49 (32%) | 1.6 x 10 2.2x10° (48%) | 6.9 x 10° (41%)

yacr2 1 (< 1%) | 444 (43%) | 56 (78%) | 85 2.0 x 10° (= 100%) | 3.6 x 107 (89%)

121> Number of pointer uses that are (a) ignored because the pointer cannot be widened, and (b) considered unsafe during the analysis.
2 Number of pointer-type cell nodes widened and their percentage among all pointer-type cell nodes in extended points-to graph.
3 Execution count of csetboundsfull[imm] instruction, the number of uncompressed bounds created.

4 Loads and stores for a pointer with uncompressed bounds versus the total number of pointer loads and stores, excluding stack spills.
> Number of explicit bounds checking with cboundscheck versus the total number of pointer dereferences in the program, excluding

stack spills and accesses in library functions.
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Figure 7: Run time and memory usage increase of MIFP for all benchmarks

that MIFP’s selective use of uncompressed bounds can reduce 79%
of the run time increase compared with the unconditional use in
wide versions.

Among these programs, the original coremark suffers the high-
est run time increase (78% for mifp and 79% for wide) because of
frequent pointer loads and stores from linked list operations. With
the change in linked list initialization, the run time increase of
coremark-mifp reduces to 3%.

Besides coremark, both em3d and bc also incur non-negligible
overhead. They have 20% and 13% run time increase in the mifp ver-
sions, and 31% and 28% increase in the wide versions, respectively.
The mifp version of all other programs has less than 10% overhead.
Except for coremark where the difference between mifp and wide
is small, in all other programs, the analysis of MIFP can effectively
reduce the runtime overhead of uncompressed bounds to a level
near the baseline. Note that because power is floating-point heavy
and only 8% of memory accesses are loading or storing pointers, it
has a near-zero overhead even if we expand all possible pointers in
the wide version.

5.3.2  Memory Usage Increase. Figure 7b shows the normalized
memory usage increases for all programs. The mifp versions incur
36% memory overhead in em3d, 1% overhead in bc, and near-zero
overhead for the rest of the programs, therefore the geomean is 2%.

The geomean of the memory overhead for the wide version is 28%.
While having a large performance overhead, coremark has near-
zero memory overhead for all versions because the original sizes of
the data structures (linked list, matrix, etc) are fixed at around 2KB,
which is small compared with the total memory usage (about 2MB).
Overall, MIFP is also effective in avoiding the memory overhead
introduced by uncompressed bounds; the memory overhead is only
about 7% of the full wide pointer expansion overhead.

6 DISCUSSION

In this section, we discuss (1) how to support programs using unions
or arbitrary pointer casts, (2) the additional limitations MIFP and
how they can be mitigated, and (3) the potential of MIFP for other
purposes outside accurate bounds checking.

Type and memory layout. Because our prototype uses LLVM IR
types to represent object memory layouts, unions and arbitrary
casts on pointers are hard to support because they introduce con-
flicting types not representable in the extended points-to graph. In
addition, unions and arbitrary casts can threaten the accuracy of
the pointer analyses MIFP depends on, challenging the correctness
of the value flow graph and the points-to graph. In the prototype
implementation, pointers to aggregate types (structs and arrays),
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functions, or other pointers can only be cast from or to void* or
char*. Pointers to elementary data types (int, double, etc) can cast
to each other but not to the listed pointer types above. Unions con-
taining pointers or aggregate types are not supported. Pointer-to-
integer conversion is supported but integer-to-pointer conversion is
not. To support programs using these features, one can replace the
type information of cell nodes in the extended points-to graph with
data structures that better model object memory layouts and reim-
plement the algorithms to operate on the memory layout instead
of types. We note that arbitrary casts are generally not supported
in safe programming languages. This includes new memory-safe
languages like Rust and Go and prototype C dialects that use the
type system to guide check instrumentation [4, 7, 10, 33]. The pro-
grammer needs to either rewrite the code to avoid the casts or wrap
the code in an unsafe region.

Handling sizeof (). MIFP modifies data layout according to
whole-program analysis results, effectively making the sizeof ()
values link-time constants. In our prototype implementation, sizeof ()
is still expanded early in the compilation pipeline. Therefore, our im-
plementation cannot identify all references of sizeof () perfectly.
One solution is to implement MIFP transform as a source-to-source
transform so that sizeof () is lowered after the transform, which
requires significant effort in modifying the MIFP implementation
and the depending analyses. Another workaround is to develop a
checker in the language frontend to catch uses of sizeof () that
cannot be recognized later in the transform, and manually port
existing code to remove these unsupported uses. We expect that
most uses of sizeof () are located at allocation sites. sizeof ()
uses in programming paradigms like getting array length with
sizeof(array)/sizeof (array[@]) can work without change.

Library Code. Although MIFP can instrument programs without
human effort, it cannot instrument allocations not included in the
whole-program IR, especially allocations from library functions.
Therefore, pointer arithmetic on pointers from libraries cannot
use uncompressed bounds for checking. This is a fundamental
limitation of our approach. However, we note that best practices
of library API designs typically discourage exposing internal data
structures to application code, for example, opaque pointers are
preferred. Therefore, following such best practices can reduce the
impact of library code.

Atomicity considerations. In our implementation, the uncom-
pressed bounds and the corresponding capability pointer are treated
as separate values, so two load/store instructions are needed to ac-
cess both of them. This can create problems for applications that
assume pointer load/stores are atomic operations. To fix this prob-
lem without source code changes, hardware support for atomic
access of these fat pointers is required. One implementation strat-
egy is to expand the maximum fat pointer size so that the entire
fat pointer with uncompressed bounds can be transferred between
memory and register with a single instruction.

Wild out-of-bounds pointers. One benefit of MIFP’s approach
is the potential to support wild out-of-bounds pointers. When a
pointer is moved too far away from the bounds, CHERI will not be
able to represent the compressed bounds and will invalidate the
pointer. If supporting such pointers is required, the only option
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is carrying the uncompressed bounds. This is not possible with
mitigation techniques based on memory padding.

Generalization for other pointer metadata. MIFP uses the ex-
tended points-to graph to determine data type transforms required
for spatial memory safety. However, we expect the graph represen-
tation to also work for other security policies that attach metadata
on a per-pointer basis. For example, to reduce the cost of catch-
ing use-after-free or double-frees, a fine-grained scheme can use
compiler analysis to find all pointers that may trigger such errors
and use the graph representation to only create metadata for these
vulnerable pointers without affecting other safe pointers [15, 33].
In application domains where the atomicity problem caused by the
extra metadata is insignificant (e.g., on embedded systems where
there is only one thread), it is also possible to enforce multiple
security policies, each with its own per-pointer metadata.

7 CONCLUSION

In this paper, we introduced MIFP and showed how its whole-
program transform selectively adds uncompressed bounds for un-
safe pointers. The extended points-to graph makes it possible for
MIFP to select fat pointer representations on a per-pointer basis
and only attach uncompressed bounds for necessary fat pointers.
The evaluation shows that MIFP is effective in maintaining the
performance and memory savings of bounds compression while
avoiding bounds inaccuracy.

We believe that fat pointer with bounds compression is a promis-
ing practical solution against spatial memory errors, and we con-
sider MIFP as one necessary option for fat-pointer schemes to
be deployed in security-sensitive domains. In the future, we also
envision MIFP’s method being adapted for other security-related
problems that benefit from per-pointer metadata.
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